Approximation of functions by Bernoulli wavelet and its applications in solution of Volterra integral equation of second kind

نویسندگان

چکیده

Abstract In this paper, two new estimators $$ E_{2^{k-1},0}^{(1)}(f) E 2 k - 1 , 0 ( ) f and E_{2^{k-1},M}^{(1)}(f) M of characteristic function an estimator E_{2^{k-1},M}^{(2)}(f) H $$\ddot{\text {o}}$$ o ¨ lder’s class $$H^{\alpha } [0,1)$$ H α [ order $$0<\alpha \leqslant 1$$ < ⩽ have been established using Bernoulli wavelets. A technique has applied for solving Volterra integral equation second kind wavelet operational matrix integration as well product matrix. These matrices utilized to reduce the into a system algebraic equations, which are easily solvable. Some examples illustrated show validity efficiency proposed research paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

Spline Approximation to the Solution of the Volterra Integral Equation of the Second Kind

A cubic spline approximation in C1 to the solution of a general Volterra integral equation of the second kind is constructed. Under certain conditions, convergence of the approximation and its first two derivatives is proved and error bounds are obtained. The question of stability is not examined.

متن کامل

Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method

In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arabian Journal of Mathematics

سال: 2021

ISSN: ['2193-5343', '2193-5351']

DOI: https://doi.org/10.1007/s40065-021-00351-z